Ты это имела в виду
? Статьи все Вреденовские!
Преимуществами керамических пар трения являются высокая износостойкость и более высокая чистота обработки поверхности, высокая биоинертность, устойчивость к коррозии. Недостатки: повышенная жесткость пары керамика-керамика, склонность к разрушению, в том числе самопроизвольному при нарушении технологии производства или имплантации, а также колкость (особенно, пары керамика-керамика) (рис. 2). Появление керамического дебриса приводит к катастрофически нарастающему износу пары трения (как керамика-полиэтилен, так и керамика-керамика), повышенному образованию продуктов разрушения с индукцией процессов остеолиза в костных ложах имплантатов и фиброзирования в мягких тканях. При ревизионных операциях отдельной проблемой является невозможность полного удаления остатков керамических частиц от первичного эндопротеза, повышающих износ уже ревизионной пары трения.
Рис. 2. Разрушение керамической головки эндопротеза.
Целесообразность применения биоактивных и биодеградируемых керамических покрытий дискуссионна. С одной стороны, они улучшают процесс остеоинтеграции, обладают остеокондуктивным эффектом, с другой, при толстослойном нанесении не происходит полного костного замещения керамики, и ее остатки при длительных циклических нагрузках, отслаиваясь от металлической поверхности имплантата, могут индуцировать образование продуктов износа и остеолиз.
Полиэтилен
Существуют полиэтилены низкой, средне-низкой, высокой, ультравысокой плотностей и ультравысокой плотности с поперечными связями. Полиэтилен применяют для создания пары трения. В настоящее время широкое распространение получил полиэтилен ультравысокой плотности и его производные, как правило, для изготовления вертлужного компонента. Пара трения металл (головка эндопротеза) - полиэтилен (чашка или вкладыш) до настоящего времени является эталонной. Для модификации полиэтилена ультравысокой плотности в конце 1970-х годов применяли углеродные волокна, повышающие модуль упругости и износостойкость, снижающие способность к деформациям (продукт Poly II, Zimmer). Однако опыт применения показал более высокую частоту разрушений элементов из Poly II, в том числе поверхностных. Частично это было связано с плохой воспроизводимостью технологии изготовления. В начале 90-х годов прошлого века появилась технология кристаллизации полиэтилена ультравысокой плотности без разрыва молекулярных цепей и потери молекулярной массы (Hylamer, DePuy), характеризовавшаяся повышением прочности продукта и его устойчивости к оксидации.
Стерилизация изделий из полиэтилена путем высокодозового гамма-облучения приводит к возникновению в них оксидативных реакций в виде двух основных направлений: разрыва молекулярных цепей и образования поперечных связей. Причем, если на поверхности образца преобладают реакции деградации полиэтилена, то в глубине растет уровень поперечных сшивок между его молекулами.
Технология создания полиэтилена с поперечными связями, позволяющая обеспечить образование их во всем объеме вещества, а также подавить реакции деградации, привела к получению высокопрочного и износостойкого материала, приближающегося по этим параметрам к парам трения металл-металл, однако позволяющего избежать таких недостатков металлических сочленений, как жесткость, токсичность и аллергенность (за счет повышения концентрации ионов кобальта, никеля и хрома в крови). Однако опыт применения полиэтилена с поперечными связями показал, что при всей перспективности экспериментальных и первых клинических результатов, существует нестабильность технологии производства этого материала, а также повышенный риск разрушения изделий из него при ударных нагрузках.
Таким образом, до настоящего времени наиболее применимым остается стандартный полиэтилен ультравысокой плотности, в том числе с вариантом рекристаллизации, а полиэтилен с поперечными связями сохраняет высокую перспективность как новый вариант высокопрочной пары трения.